Up milling (conventional milling). In up milling the workpiece is fed against the direction of cutter rotation, as shown in Fig.12.3a. As we can see in that figure, the depth of cut (and consequently the load) gradually increases on the successively engaged cutting edges.
逆铣(传统铣削)在逆铣中工件逆着铣刀转动的方向进给如图12.3a所示。就像在此图中能看到的那样切削深度(及作为结果的载荷)随着切削刃持续进入切削而逐渐增加。
Therefore, the machining process involves no impact loading, thus ensuring smoother operation of the machine tool and longer tool life. The quality of the machined surface obtained by up milling is not very high. Nevertheless, up milling is commonly used in industry, especially for rough cuts.
所以,这种工艺没有冲击载荷,从而保证了机床的较平稳运行和较长寿命。通过逆铣所得机加工表面质量不是很高。然而逆铣仍经常被用在工业上,尤其是粗切削时。
Down milling (climb milling). As can be seen in Fig.12.3b, in down milling the cutter rotation coincides with the direction of feed at the contact point between the tool and the workpiece. It can also be seen that the maximum depth of cut is achieved directly as the cutter engages with the workpiece.
顺铣(同向铣削)如同在图12.3b中看到的那样在顺铣时刀具与工件之间接触点上铣刀旋转与进给方向一致。还可以看到当刀具进入工件切削时直接达到最大切削深度。
This results in a kind of impact, or sudden loading. Therefore, this method cannot be used unless the milling machine is equipped with a backlash eliminator on the feed screw. The advantages of this method include higher quality of the machined surface and easier clamping of workpieces, since the cutting forces act downward.
这会导致一种冲击,或突然加载。因此,这种方法只有当铣床在进给螺栓上配备间隙消除器时才采用。这种方法的优点包括机加工表面质量较高和工件由于切削力向下作用而较容易夹紧。