三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
17. (本小题满分12分)
在中,为锐角,角所对应的边分别为,且
(I)求的值;
(II)若,求的值。
本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。
解:(Ⅰ)、为锐角,,
又,
,,
…………………………………………6分
(Ⅱ)由(Ⅰ)知,.
由正弦定理得
,即,
,
,
……………………………………12分
18. (本小题满分12分)
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。
(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望。
本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。
解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,
事件为“采访该团3人中,1人持金卡,0人持银卡”,
事件为“采访该团3人中,1人持金卡,1人持银卡”。
所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是。
(Ⅱ)的可能取值为0,1,2,3
,
,,
所以的分布列为
0 | 1 | 2 | 3 | |
所以, ……………………12分
19(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角的大小。
本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角
等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。
解法一:
(Ⅰ)因为平面⊥平面,平面,
平面平面,
所以⊥平面
所以⊥.
因为为等腰直角三角形, ,
所以
又因为,
所以,
即⊥,
所以⊥平面。 ……………………………………4分
(Ⅱ)存在点,当为线段AE的中点时,PM∥平面
取BE的中点N,连接AN,MN,则MN∥=∥=PC
所以PMNC为平行四边形,所以PM∥CN
因为CN在平面BCE内,PM不在平面BCE内,
所以PM∥平面BCE ……………………………………8分
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD
作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD
作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH
因此,∠AEF为二面角F-BD-A的平面角
因为FA=FE, ∠AEF=45°,
所以∠AFE=90°,∠FAG=45°.
设AB=1,则AE=1,AF=.
FG=AF·sinFAG=
在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,
GH=BG·sinGBH=·=
在Rt△FGH中,tanFHG==
故二面角F-BD-A的大小为arctan. ………………………………12分
解法二:
(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,
所以AE⊥AB.
又因为平面ABEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.
设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,
所以∠AFE= 90°.
从而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因为BE平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ) M(0,0,).P(1,,0).
从而=(,).
于是
所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,
故PM∥平面BCE. ………………………………8分
(Ⅲ) 设平面BDF的一个法向量为,并设=(x,y,z)
=(1,1,0),
即
去y=1,则x=1,z=3,从=(0,0,3)
取平面ABD的一个法向量为=(0,0,1)
故二面角F-BD-A的大小为. ……………………………………12分